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The control polygon of a rational Bézier curve is well-defined and has
geometric significance; there is a sequence of weights under which the
limiting position of the curve is the control polygon. For a rational Bézier
surface patch, there are many possible polyhedral control structures, and
none is canonical. We propose a not necessarily polyhedral control structure
for rational surface patches, regular control surfaces, which are certain C0

spline surfaces. While not unique, regular control surfaces are exactly the
possible limiting positions of a rational Bézier patch when the weights vary.
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1. INTRODUCTION

In geometric modeling of curves and surfaces, the overall shape
of an individual patch is intuitively governed by the placement of
control points, and a rational patch may be finely tuned by altering
the weights of the basis functions; large weights pull the patch
towards the corresponding control points. The control points also
have a global meaning as the patch lies within the convex hull of
the control points, for any choice of weights.

This convex hull may be indicated by drawing some edges be-
tween the control points. The rational bicubic tensor product patches
in Figure 1 have the same weights but different control points, and
the same 3 × 3 grid of edges drawn between the control points.
Unlike the control points or their convex hulls, there is no canonical
choice of these edges. We paraphrase a question posed to us by Carl
de Boor and Ron Goldman: What is the significance for modeling
of such control structures (control points plus edges)?

We provide an answer to this question. These control structures,
the triangles, quadrilaterals, and other shapes implied by these
edges, encode limiting positions of the patch when the weights
assume extreme values. Our main results are that the only possible
limiting positions of a patch are the control structures arising from
regular decompositions (see Section 4) of the points indexing its
basis functions and control points, and any such regular control
structure is the limiting position of some sequence of patches.
Figure 2 shows rational bicubic patches with the control points of
Figure 1 and extreme weights. Each is very close to a composite
of nine bilinear tensor product patches, corresponding to the nine
quadrilaterals in their control structures. The control points of
each limiting bilinear patch are the corners of the corresponding
quadrilateral. These limiting bilinear patches are all planar on
the left, while only the corner quadrilaterals are planar on the
right.

The control structure in these examples, which is superimposed
on the patch, is a regular decomposition of the 3×3 grid underlying
a bicubic patch. It is regular as it is induced from the upper convex
hull of the graph of a function on the 16 grid points. Such a function
could be 0 at the four corners, 2 at the four interior points, and 1 at
the remaining eight edge points. Figure 3 shows this decomposition
on the left together with an irregular decomposition on the right. (If
the second decomposition were the upper convex hull of the graph
of a function on the grid points, and we assume—as we may—that
the central square is flat, then the value of the function at a vertex is
lower than the values at a clockwise neighbor, which is impossible
outside of Escher woodcuts.)

Such control structures and limiting patches were considered
in Craciun et al. [2010], but were restricted to triangulations; this
restricted the scope of the results. Our results hold in complete
generality and like those of Craciun et al. [2010], rely upon a
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Fig. 1. Two rational bicubic patches.

Fig. 2. Two rational bicubic patches with extreme weights.

Fig. 3. Regular and irregular decompositions.

construction in computational algebraic geometry called a toric
degeneration [Gel′fand et al. 1994, Chapter 8.3.1].

While our primary interest is to explain the meaning of control
nets for the classical rational tensor product patches and rational
Bézier triangles, we work in the generality of Krasauskas’ toric
Bézier patches [Krasauskas 2002, 2006]. This is because any poly-
gon may arise in a regular decomposition of the points underlying
a classical patch. Figure 4 shows a regular decomposition of the
points in the 2 × 2 grid underlying a biquadratic patch and on the
right is a degenerate patch, which consists of four triangles and
Krasauskas’s double pillow. The pillow corresponds to the central
quadrilateral in the 2 × 2 grid, with the “free” internal control point
corresponding to the center point of the grid.

Our definitions and arguments make sense in any dimension.
The body of this article treats surface patches, but the proofs in the
Appendix will be given for patches of any dimension.

We do not address the variation diminishing property, which
is another fundamental global aspect of the control polygon of a
rational Bézier curve. This states that the number of points in which
a Bézier curve meets a line is bounded by number of points in
which its control polygon meets the same line. Generalizing this to
surfaces is important and interesting, but we currently do not know
how to formulate variation diminishing for general surface patches.
We remark that this is similar to the open problem of finding a
satisfactory multivariate generalization of Descartes’ rule of signs.

We first recall basics of rational Bézier triangles and rational
tensor product patches and their control nets. Next, we present
Krasauskas’ toric Bézier patches and introduce the crucial notion
of a regular polyhedral decomposition. In the last section we define
the main object in this article, a regular control surface, which is a
union of toric Bézier patches governed by a regular decomposition.

Fig. 4. Degenerate biquadratic patch containing a pillow.

b2

b1

b0 b3

b1

b2

b0 b3

Fig. 5. Rational cubic Bézier planar curves with their control polygons.

We also state our main theorems, Theorem 1, that regular control
surfaces are limits of toric Bézier patches, and Theorem 2, that if
a patch is sufficiently close to a control surface, then that control
surface must be regular. Proofs appear in the Appendix, where we
work in the generality of toric patches in arbitrary dimension. Our
main tools are results of Kapranov et al. [1991, 1992] which identify
all possible toric degenerations of a projective toric variety.

2. BÉZIER PATCHES AND CONTROL NETS

We define rational Bézier curves and surfaces and tensor product
patches in a form that is convenient for our discussion, and then
describe their control nets. Our definition differs from the standard
formulation [Farin 1997] in that different domains are used for
different degrees. Write R≥ for the nonnegative real numbers and
R> for the positive real numbers.

Let d be a positive integer. For each i = 0, . . . , d define the
Bernstein polynomial βi;d (x),

βi;d (x) := xi(d − x)d−i .

(Substituting x = dy and multiplying by
(
d

i

)
d−d for normalization,

this becomes the usual Bernstein polynomial. We omit the binomial
coefficients, for it is these unadorned Bernstein polynomials which
the toric basis functions of Section 3 generalize.) Given weights
w0, . . . , wd ∈ R> and control points b0, . . . , bd ∈ R

n (n = 2, 3),
we have the parameterized rational Bézier curve

F (x) :=
∑d

i=0 wibiβi;d (x)∑d

i=0 wiβi;d (x)
: [0, d] −→ R

n .

Our domain is [0, d] rather than [0, 1], for this is the convention for
toric patches.

The control polygon of the curve is the union of segments
b0, b1, . . . , bd−1, bd . Figure 5 shows two rational cubic Bézier pla-
nar curves with their control polygons. There are two standard ways
to extend this to surfaces. The most straightforward gives rational
tensor product patches. Let c, d be positive integers and for each
i = 0, . . . , c and j = 0, . . . , d let w(i,j ) ∈ R> and b(i,j ) ∈ R

3 be a
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weight and a control point. The associated rational tensor product
patch of bidegree (c, d) is the image of the map [0, c]×[0, d] → R

3,

F (x, y) :=
∑c

i=0

∑d

j=0 w(i,j )b(i,j )βi;c(x)βj ;d (y)∑c

i=0

∑d

j=0 w(i,j )βi;c(x)βj ;d (y)
.

Triangular Bézier patches are another extension. Set

d := {(x, y) ∈ R
2 | 0 ≤ x, y and x + y ≤ d}

and set A := d ∩ Z
2, the points with integer coordinates (lattice

points) in the triangle d . For (i, j ) ∈ A, we have the bivariate
Bernstein polynomial

β(i,j );d (x, y) := xiyj (d − x − y)d−i−j .

Given weights w = {w(i,j ) | (i, j ) ∈ A} and control points B =
{b(i,j ) | (i, j ) ∈ A}, the associated triangular rational Bézier patch

is the image of the map d → R
3,

F (x, y) :=:

∑
(i,j )∈A w(i,j )b(i,j )β(i,j );d (x, y)∑

(i,j )∈A w(i,j )β(i,j );d (x, y)
.

The control points of a Bézier curve are connected in sequence
to give the control polygon, which is a piecewise linear caricature
of the curve. For a surface patch there are, however, many ways to
interpolate the control points by edges to form a control net. There
also may not be a way to fill in these edges with polygons to form
a control polytope. Even when this is possible, the significance
of this structure for the shape of the patch is not evident, except
in special cases. For example, Chang and Davis [1984] show for
triangular Bézier patches that if the control points are the graph of a
convex function over the lattice points, and this induces a particular
triangulation called the Bézier net, then the patch is convex.

3. TORIC PATCHES AND TORIC VARIETIES

Krasauskas’s toric patches [Krasauskas 2002] are a natural exten-
sion of rational Bézier triangles and rational tensor product patches
to arbitrary polygons whose vertices have integer coordinates, called
lattice polygons. They are based on toric varieties [Cox et al. 2011;
Fulton 1993] from algebraic geometry which get their name as
they are natural compactifications of algebraic tori (C∗)n, where
C

∗ := C \ {0}. They are naturally associated to lattice polygons
(and in higher dimensions, lattice polytopes), and the positive real
part [Fulton 1993, Chapter 4; Sottile 2003] of a toric variety is
canonically identified with the corresponding polygon/polytope.

We simplify our notation, writing x = (x1, x2) for points of R
2.

Toric patches begin with a finite set A ⊂ Z
2 of (integer) lattice

points. The convex hull of A is the set of all convex combinations∑
a∈A

paa where pa ≥ 0 and 1 =
∑
a∈A

pa

of points of A, which is a lattice polygon and is written �A. To each
edge e of �A, there is a valid inequality he(x) ≥ 0 on �A, where
he(x) is a linear polynomial with relatively prime integer coefficients

that vanishes on the edge e. For example, if A = d ∩ Z
2 and

�A = d , then the inequalities are

x1 ≥ 0, x2 ≥ 0, and d−x1−x2 ≥ 0 ,

and the central quadrilateral of Figure 4 has inequalities

x1+x2−1, 1+x1−x2, 3−x1−x2, 1+x2−x1 ≥ 0.

Let E be the set of edges of the polygon �A. To each lattice point
a ∈ A, define the toric basis function βa,A : �A → R to be

βa,A(x) :=
∏
e∈E

he(x)he(a).

This is strictly positive in the interior of �A. If a lies on an edge
e of �A, then βa,A is strictly positive on the relative interior of e,
and if a is a vertex, then βa,A(a) > 0. In particular the toric basis
functions have no common zeroes in �A.

Observe that the toric basis functions for A = [0, c] × [0, d] ∩
Z

2 and A = d ∩ Z
2 are equal to the Bernstein polynomials

βi;c(x1)βj ;d (x2) and β(i,j );d (x1, x2) underlying the tensor product and
triangular Bézier patches.

Toric patches also require weights and control points. Let #A
be the number of points in A. Let R

A
> be R

#A
> with coordinates

(za ∈ R> | a ∈ A) indexed by elements of A. A toric Bézier patch
of shape A is given by a collection of positive weights w = (wa |
a ∈ A) ∈ R

A
> and control points B = {ba | a ∈ A} ⊂ R

3. These
are used to define a map �A → R

3,

FA,w,B(x) :=
∑

a∈A wabaβa,A(x)∑
a∈A waβa,A(x)

. (1)

Since the toric basis functions are nonnegative on �A and have no
common zeroes, this denominator is strictly positive on �A. Write
YA,w,B for the image of �A under the map FA,w,B, which is a toric
Bézier patch of shape A.

We will show that the map FA,w,B : �A → R
3 factors as

FA,w,B : �A
βA−−→ A w·−−→ A πB−−→ R

3 , (2)

where
A ⊂ R

A is the standard simplex of dimension #A−1,
which we identify with the nonnegative orthant modulo R>, the
map βA is induced by the toric basis functions βa,A, the map w· is
induced by coordinatewise multiplication by the weights w, and the
map πB is a projection given by the control points B. The purpose
of this factorization is to clarify the role of the weights in a toric

patch by isolating their effect. The image βA(�A) ⊂ A
is a

standard toric variety XA. Acting on this by the map w· gives a
translated toric variety XA,w , which we call a lift of the patch YA,w,B
as its image under the projection πB is YA,w,B . We use results on the
limiting position of the translates XA,w as the weights are allowed
to vary, which are called toric degenerations.

We make this precise. Let R
A
≥ be R

#A
≥ with coordinates (za ∈ R≥ |

a ∈ A) indexed by elements of A. The standard simplex

A
:=

{
z ∈ R

A
≥ |

∑
a∈A

za = 1

}

is the convex hull of the standard basis in R
A, and so has natural

barycentric coordinates. It is also the quotient of the nonnegative
orthant under multiplication by positive scalars, which gives it nat-
ural homogeneous coordinates, in which we identify [za | a ∈ A]
with [t · za | a ∈ A] when za ≥ 0 and t > 0. These homogeneous
coordinates correspond to barycentric coordinates as follows.

[za | a ∈ A] ⇐⇒ 1∑
a∈A za

(za | a ∈ A) (3)

Geometrically, [za | a ∈ A] ∈ A
is the unique point where the

ray R> · (za | a ∈ A) meets the simplex
A

.
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Let βA : �A → A
be the map βA(x) = [βa,A(x) | a ∈ A]. A

vector of weights w ∈ R
A
> defines a map w· : A → A

,

w · [za | a ∈ A] = [waza | a ∈ A] .

Given control points B, define the linear map πB : R
A → R

3 by

πB(z) :=
∑
a∈A

baza .

The image of the simplex
A

under πB is the convex hull of the
control points B, and by these definitions, the map FA,w,B in (1)
defining the toric Bézier patch is the composition (2).

We call YA,w,B a toric patch because the image βA(�A) is a toric
variety. Elements a of Z

2 are exponents of monomials,

a = (a1, a2) ←→ x
a1
1 x

a2
2 ,

which we will write as xa. The points of A define a map ϕA : R
2
> →

A
by

ϕA(x) := [xa | a ∈ A] .

The closure in
A

of the image of ϕA is the toric variety XA. We
have the following result of Krasauskas [2002].

PROPOSITION 1 [KRASAUSKAS 2002]. The image of �A under the
map βA is the toric variety XA.

Toric patches share with rational Bézier patches the following
recursive structure. If a is a vertex of �A, then ba = FA,w,B(a) is a
point in the patch. If e is the edge between two vertices of �A, then
the restriction FA,w,B|e of FA,w,B to e is the one-dimensional toric
patch given by the points of A lying on e and the corresponding
weights, which is a rational Bézier curve. For example, the edges
of the patches in Figure 1 are all rational cubic Bézier curves.

4. REGULAR POLYHEDRAL DECOMPOSITIONS

We recall the definitions of regular (or coherent) polyhedral sub-
divisions from geometric combinatorics, which were introduced in
Gel′fand et al. [1994, Section 7.2]. Because subdivision has a differ-
ent meaning in modeling, we instead use the term decomposition.
LetA ⊂ R

2 be a finite set and suppose that λ : A → R is a function.
We use λ to lift the points of A into R

3. Let Pλ be the convex hull
of the lifted points,

Pλ = conv{(a, λ(a)) | a ∈ A} ⊂ R
3.

Each face of Pλ has an outward pointing normal vector, and its
upper facets are those whose normal has positive last coordinate.
If we project these upper facets back to R

2, they cover the polygon
�A and are the facets of the regular polyhedral decomposition Tλ

of �A induced by λ. (Taking lower facets gives T−λ, so it is no loss
of generality to work with upper facets.)

The edges and vertices of Tλ are the images of the edges and
vertices lying on upper facets. Figure 6 shows the upper facets
and the regular polyhedral decompositions given by two different
lifting functions for the points A underlying a biquadratic tensor
product patch. More generally, a polyhedral decomposition of �A
is a collection T of polygons, line segments, and points of A, whose
union is �A, where any edge, vertex, or endpoint of a segment also
lies in T , and any two elements of T are either disjoint or their
intersection is an element of T . A decomposition T is regular if it
is induced from a lifting function.

Fig. 6. Two upper hulls and decompositions for biquadratic patches.

Fig. 7. Two different decompositions for biquadratic patches.

b2

b1

b0 b3

b1

b2

b0 b3

Fig. 8. Rational cubic Bézier planar curves with t = 5.

A decompositionS of the configurationA of points is a collection
S of subsets of A called faces. The convex hulls of these faces are
required to be the polygons, line segments, and vertices of a poly-
hedral decomposition T (S) of �A. In particular, the intersection of
any face with the convex hull �F of another face F of S is either
empty, a vertex of �F , or the points of F lying in some edge of �F .
A face F is a facet, edge, or vertex of S as its convex hull �F is a
polygon, line segment, or vertex. The decomposition S is regular if
the polyhedral decomposition T (S) is regular. We remark that not
every point of A need lie in some face of a decomposition.

Figure 7 shows two different lifting functions that induce the same
regular polyhedral decomposition of the 2 × 2 square underlying a
biquadratic patch, but different regular decompositions of A. The
center point of A does not lie in any face of the decomposition on
the right as its lift does not lie on any upper facet.

Here is a one-dimensional example. Let λ take the values
{0, 1, 2, 0} on the points {0, 1, 2, 3} underlying rational cubic Bézier
curves. This induces a regular decomposition of {0, 1, 2, 3} with
facets

{0, 1, 2} and {2, 3} . (4)

5. REGULAR CONTROL SURFACES

Regular control surfaces are possible limiting positions of patches.
We first illustrate these notions on a rational cubic curve in the
plane. The curves of Figure 5 have weights (1, 4, 4, 1) at the points
0 , 1 , 2 , 3, respectively. We use the lifting function inducing the
decomposition (4) to define a family of weights (1 · t0, 4 · t1, 4 ·
t2, 1 · t0) = (1, 4t, 4t2, 1) for t ∈ R>. Figure 8 shows the curves
with t = 5 and the control points of Figure 5.

ACM Transactions on Graphics, Vol. 30, No. 5, Article 110, Publication date: October 2011.



Toric Degenerations of Bézier Patches • 110:5

b2

b1

b0 b3
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b0 b3

Fig. 9. Regular control curves.

To consider the limit as t → ∞, write the Bernstein polynomials
in homogeneous form as βi;3 := uiv3−i for i = 0, . . . , 3, for then
the cubic curve is the image of points (u, v) ∈ (R>)2.

Limiting positions are given by restrictions to the facets of the de-
composition (4). Multiplying the βi;3 by the weights and restricting
to each facet, we get basis functions

{v3, 4tv2u, 4t2vu2} , and {4t2vu2, u3} .

These give rational Bézier curves

v3b0 + 4tv2ub1 + 4t2vu2b2

v3 + 4tv2u + 4t2vu2
and

4t2vu2b2 + u3b3

4t2vu2 + u3
.

Dividing out the common factor of v from the first and replacing tu
by u, and similarly dividing out u2 from the second and replacing
vt2 by v, we get

v2b0 + 4vub1 + 4u2b2

v2 + 4vu + 4u2
and

4vb2 + ub3

4v + u
,

which are rational quadratic and linear Bézier curves. Figure 9
shows these curves with the control points of Figure 8. These are
regular control curves induced by the decomposition (4).

This restriction to facets followed by a monomial reparametriza-
tion allowed the determination of the limiting position of the curve
as t → ∞. While a sequence of such restrictions and reparametriza-
tions leads to general control curves, these operations are not suffi-
cient for surfaces.

We describe the possible limiting positions of toric surface
patches. Let A ⊂ Z

2 be a finite set, w ∈ R
A
> be a vector of weights,

and B = {ba | a ∈ A} be control points for a toric patch YA,w,B of
shape A.

Suppose that we have a decomposition S of A. We may use the
weights w and control points B indexed by elements of a facet F
as weights and control points for a toric patch of shape F , written
YF,w|F ,B|F . In fact, this can be done for any face of S. The union

YA,w,B(S) :=
⋃
F∈S

YF,w|F ,B|F ,

of these patches is the control surface induced by the decomposition
S. As the domain of a patch of shape F is the convex hull �F of F
and faces of toric patches are again toric patches, the control surface
of a patch induced by a decomposition is naturally a C0 spline
surface. A control surface YA,w,B(S) is regular if the decomposition
S is regular.

Figure 10 shows the control surfaces of the bicubic patches from
Figure 1. These control surfaces are regular as they are induced
by the 3 × 3 grid, which is a regular decomposition. We invite the
reader to compare them to the patches of Figure 2. Figure 11 shows
the irregular decomposition of the 3 × 3 grid from Figure 3 and a
corresponding irregular control surface. The central quadrilateral A
in the decomposition corresponds to the bilinear patch at the top,
the triangle B in the decomposition corresponds to the indicated flat

Fig. 10. Regular control surfaces.

A

CB

o p q r

A

B

Co p q r

Fig. 11. Irregular decomposition and an irregular control surface.

triangle, and the triangle C with points o, p, q, r along one edge
corresponds to the singular ruled cubic in the surface. The polygonal
frame formed by the corresponding control points on the right is the
control polygon for this edge of C, which is a rational cubic Bézier
curve.

We show that regular control surfaces are exactly the possible
limits of toric patches when the control points B are fixed but the
weights w are allowed to vary. In particular, the irregular control
surface Figure 11 cannot be the limit of toric Bézier patches.

Let λ : A → R be a lifting function. We use this and a given set
of weights w = {wa ∈ R> | a ∈ A} to get a set of weights which
depends upon a parameter, wλ(t) := {tλ(a)wa | a ∈ A}. These
weights are used to define a toric degeneration of the patch,

FA,w,B,λ(x; t) :=
∑

a∈A tλ(a)wabaβa(x)∑
a∈A tλ(a)waβa(x)

.

Let Sλ be the regular decomposition of A induced by λ. We show
that the regular control surface YA,w,B(Sλ) induced by Sλ is the
limit of the patches YA,w,B,λ(t) parameterized by FA,w,B,λ(x; t) as
t → ∞. We distinguish between the parametrization FA,w,B,λ(x; t)
and its image the patch YA,w,B,λ(t), not only because they are distinct
objects, but because there is no limiting parametrization, despite
there being a well-defined limiting position of patches.

This limit is with respect to the Hausdorff distance between two
subsets of R

3. Two subsets X and Y of R
3 are within Hausdorff

distance ε if for every point x of X there is some point y of Y within
a distance ε of x, and vice versa. With this notion of distance, we
have the following result.

THEOREM 1. lim
t→∞

YA,w,B,λ(t) = YA,w,B(Sλ).

That is, for every ε > 0 there is a number M such that if t ≥ M ,
then the patch YA,w,B,λ(t) and the regular control surface YA,w,B(Sλ)
are within Hausdorff distance ε.

We illustrate Theorem 1. On the left in the following graphic
are the weights of a bicubic patch, in the center are the values of a

ACM Transactions on Graphics, Vol. 30, No. 5, Article 110, Publication date: October 2011.



110:6 • L. D. Garcı́a-Puente et al.

Fig. 12. Toric degeneration of a rational tensor product patch of bidegree (3, 3).

lifting function, and the corresponding regular decomposition is on
the right.

1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1

0 2 2 0

1 1 1 1

1 2 2 1

0 1 1 0.5

The two lighter points, (1, 2) and (2, 2), lie in no face of the de-
composition. Figure 12 shows the toric degeneration of this bicubic
patch at values t = 1 and t = 6, and the regular control surface, all
with the indicated control points.

We will prove Theorem 1 in Appendix A. The key idea is the

factorization (2) of the map FA,w,B,λ(x; t) through the simplex
A

.
This factorization allows us to study the limit in Theorem 1 by
considering the effect of the family of weights wλ(t) on the toric

variety XA in
A

. Using equations for XA, we can show that the
limit as t → ∞ of the translated toric variety XA,wλ(t) is a regular
control surface in R

A whose projection to R
3 is the regular control

surface YA,w,B(Sλ).
Figure 13 shows a toric degeneration of a rational cubic Bézier

curve, together with the corresponding degeneration of the curve

XA,w in the simplex
A

. Here, the weights are wλ(t) =
(1, 3t2, 3t2, 1). That is, the control points b0 and b3 have weight
1, while the internal control points b1 and b2 have weights 3t2.

By Theorem 1, every regular control surface is the limit of the
corresponding patch under a toric degeneration. Our second main
result is a converse: If a space Y is the limit of patches of shape
A with control points B, but differing weights, then Y is a regular
control surface of shape A and control points B.

THEOREM 2. Let A ⊂ Z
2 be a finite set and B = {ba | a ∈ A} ⊂

R
3 a set of control points. If Y ⊂ R

3 is a set for which there is a
sequence w1, w2, . . . of weights so that

lim
i→∞

YA,wi ,B = Y,

then there is a lifting function λ : A → R and a weight w ∈ R
A
>

such that Y = YA,w,B(Sλ), a regular control surface.

To prove Theorem 2, we consider the sequence of translated

toric varieties XA,wi ⊂ A
. We show how Kapranov et al. [1991,

1992] implies that the set of all translated toric varieties is naturally

compactified by the set of all regular control surfaces in
A

. Thus
some subsequence of {XA,wi } converges to a regular control surface

in
A

, whose image must coincide with Y , implying that Y is
a regular control surface. This method of proof does not give a

t = 1

πB

t = 3

πB

t = 9

πB

Fig. 13. Toric degenerations of a rational cubic Bézier curve.

simple way to recover a lifting function λ or the weight w from the
sequence of weights w1, w2, . . . .

We prove Theorem 1 in Appendix A and Theorem 2 in Ap-
pendix B. While both require more algebraic geometry than we have
assumed so far, Appendix A is more elementary and Appendix B is
significantly more sophisticated.

APPENDIXES

A. PROOF OF THEOREM 1

Let d, n be positive integers. The definitions and results of
Sections 3, 4, and 5, as well as the statements of Theorems 1 and 2
make sense if we replace A ⊂ Z

2 by A ⊂ Z
d and B ⊂ R

3 by
B ⊂ R

n. We work here in this generality. This requires straightfor-
ward modifications such as replacing polygon by polytope and in
general removing restrictions on dimension. We invite the reader to
consult Craciun et al. [2010] for a more complete treatment.

If the control points B are the vertices {ea | a ∈ A} ⊂ R
A of the

simplex
A

, then the toric patch YA,w,B is the (translated) toric
variety XA,w . Given a decomposition S of A, write XA,w(S) for the
control surface induced byS when the control points are the vertices

of
A

. This is the union of patches XF,w|F over all faces F of S,

and each patch XF,w|F lies in the face
F

of
A

consisting of
points z whose coordinates za vanish for a �∈ F .

Then, given any control points B ⊂ R
n, we have

πB(XA,w) = YA,w,B and πB(XA,w(S)) = YA,w,B(S) .

Because of this universality of XA,w , XA,w(S), and the map πB, it
suffices to prove Theorem 1 for limits of the toric variety XA,w .
Given a function λ : A → R and a weight w ∈ R

A
>, define the

family of weights wλ(t) = {tλ(a)wa | a ∈ A} for t ∈ R>.
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{0, 1, 2}, {2, 3} {0, 1}, {1, 2}, {2, 3} {0, 1}, {1, 2, 3} {0, 1}, {1, 3}

Fig. 14. Geometric realizations for four decompositions.

THEOREM 3. Let λ : A → R be a lifting function and Sλ the
regular decomposition of A induced by λ. Then, for any choice of
weights w ∈ R

A
>,

lim
t→∞

XA,wλ(t) = XA,w(Sλ) .

We prove Theorem 3 in two parts. We first show that any accu-
mulation points of {XA,wλ(t) | t ≥ 1} as t → ∞ are contained in

the union of the faces
F

of the simplex
A

for each face F
of Sλ. Then we show that XF,w|F is the set of accumulation points

contained in the face
F

, and in fact each accumulation point is a
limit point. This will complete the proof of Theorem 3 as

XA,w(Sλ) =
⋃
F∈S

XF,w|F .

We use homogeneous equations for XA,w . Let 1 ∈ R
A
> be the

weight with every coordinate 1. Equations for XA,1 were described
in Craciun et al. [2010, Proposition B.3] as follows. For every linear
relation among the points ofAwith nonnegative integer coefficients∑

a∈A
αaa =

∑
a∈A

βaa where
∑
a∈A

αa =
∑
a∈A

βa , (5)

with αa, βa ∈ N, we have the valid equation for points z ∈ XA,1,∏
a∈A

zαa
a =

∏
a∈A

zβa
a . (6)

Conversely, if z ∈ A
satisfies Eq. (6) for every relation (5),

then z ∈ XA,1. This follows from the description of toric ideals in
Sturmfels [1996, Chapter 4].

Since the toric variety XA,w is obtained from XA,1 through co-
ordinatewise multiplication by w = (wa | a ∈ A), we have the
following description of its equations.

PROPOSITION 2. A point z ∈ A
lies in XA,w if and only if∏

a∈A
zαa

a ·
∏
a∈A

wβa
a =

∏
a∈A

zβa
a ·

∏
a∈A

wαa
a ,

for every relation (5) among the points of A.

Remark 4. As every component of a point z ∈ A
and weight

w is nonnegative, we may take arbitrary (positive) roots of the equa-
tions in Proposition 2. It follows that we may relax the requirement

that the coefficients αa and βa in (5) are integers and allow them to
be any nonnegative numbers such that∑

a∈A
αaa =

∑
a∈A

βaa where
∑
a∈A

αa =
∑
a∈A

βa = 1. (7)

That is,
∑

αaa = ∑
βaa is a point in the convex hull of A with

more than one representation as a convex combination of points of
A. Since A ⊂ Z

d , we may assume that αa, βa are rational.

Among all relations (7) are those which arise when two subsets
of A have intersecting convex hulls.

PROPOSITION 3. Let F,G ⊂ A be disjoint subsets whose convex
hulls meet,

convF ∩ convG �= ∅ .

Then we have a relation of the form∑
a∈F

αaa =
∑
a∈G

βaa where
∑
a∈F

αa =
∑
a∈G

βa = 1 ,

with αa, βa ≥ 0. Thus∏
a∈F

zαa
a ·

∏
a∈G

wβa
a =

∏
a∈G

zβa
a ·

∏
a∈F

wαa
a , (8)

holds on XA,w .

Given a subset F ⊂ A, the convex hull of the points {ef | f ∈ F}
is the simplex

F
, which is a face of

A
. Under the tautological

projection πA of
A

to �A, the simplex
F

maps to the convex
hull �F of F . The geometric realization |S| of a decomposition S
of A is the union of the simplices

F
for each face F ∈ S of the

decomposition S. We call a simplex
F

a face of the geometric
realization |S|. The images of the faces of the geometric realiza-
tion |S| under the tautological projection πA form the faces of the
polyhedral decomposition T (S). Figure 14 illustrates this geometric
realization for four regular decompositions of A = {0, 1, 2, 3}. For

this,
A

is the three-dimensional simplex. For each decomposi-
tion S of A, we show the corresponding polyhedral decomposition
of �A = [0, 3] and its facets.

Suppose that a point z ∈ A
lies in the geometric realization

|S| of a decomposition S of A. Then z ∈ F
for some face F of

S, so that its support {a ∈ A | za �= 0} is a subset of F . Conversely,

any point z ∈ A
whose support is a subset of some face F of S

ACM Transactions on Graphics, Vol. 30, No. 5, Article 110, Publication date: October 2011.
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lies in |S|. We conclude that |S| ⊂ A
is the vanishing locus of

the monomials

{za · zb | {a, b} �⊂ any face F of S}
∪ {zc | c �∈ any face F of S} . (9)

A point z ∈ A
is an accumulation point of a sequence

{X1, X2, . . . } of subsets of
A

if, for every ε > 0 and ev-
ery M , there is some m ≥ M such that distance(z, Xm) < ε.
Similarly, a point z is an accumulation point of a family {X(t) |
t ∈ R>} if for every ε > 0 and M > 0, there is some
t > M such that distance(z, X(t)) < ε, and z is a limit point if
limt→∞ distance(z, X(t)) = 0.

LEMMA 5. Let w ∈ R
A
> be a weight and λ : A → R be a lift-

ing function and wλ(t) the corresponding family of weights. Every
accumulation point of {XA,wλ(t) | t ∈ R>} lies in the geometric
realization |Sλ|.

PROOF. We will show that a point y ∈ A
which does not lie in

|Sλ| cannot be an accumulation point of {XA,wλ(t)}. If y ∈ A
but

y �∈ |Sλ|, then by (9) either there are points a, b ∈ A with yayb �= 0
where {a, b} do not lie in a common face of Sλ, or a single point
c ∈ A with yc �= 0 and c does not participate in the decomposition
Sλ. Set ε := min{ya, yb} (in the first case) or ε := yc (in the second
case). We will show that if t is sufficiently large and z ∈ XA,wλ(t),
then min{za, zb} < ε/2 (in the first case) or zc < ε/2 (in the second
case), which will complete the proof.

Suppose that we are in the first case. Then the interior of the
segment a, b meets some face �F of T (Sλ). If F is the minimal
such face, then the interiors of a, b and �F meet in a point p, and
so we have the valid relation on XA,w ,

zμ
a zν

b ·
∏
f∈F

w
αf
f = wμ

a wν
b ·

∏
f∈F

z
αf
f , (10)

by Proposition 3, where

p := μa + νb =
∑
f∈F

αf f and μ + ν = 1 =
∑
f∈F

αf ,

and the coefficients μ, ν, αf are positive. For XA,wλ(t) the rela-
tion (10) becomes

zμ
a zν

b · t
∑

f∈F αfλ(f) ·
∏
f∈F

w
αf
f =

∏
f∈F

z
αf
f · tμλ(a)+νλ(b) · wμ

a wν
b .

Since the lift (a, λ(a)), (b, λ(b)) of a, b does not lie on an upper
facet of Pλ, but the lift of �F does lie on an upper facet, the point
p which is common to a, b and �F is lifted lower on the lift of a, b
than on the lift of �F . We thus have the inequality

μλ(a) + νλ(b) <
∑
f∈F

αfλ(f) . (11)

Let δ > 0 be the difference of the two sides of (11). Then points
z ∈ XA,w(t) satisfy

zμ
a zν

b = t−δ
∏
f∈F

z
αf
f · wμ

a wν
b∏

f∈F w
αf
f

< t−δ · wμ
a wν

b∏
f∈F w

αf
f

,

as each component of z ∈ A
is positive and at most 1.

This inequality implies that if t is sufficiently large, then at least
one of the components za, zb is less than ε/2, and thus y is not

an accumulation point of the sequence. A similar argument in the
second case of c �∈ Sλ completes the proof.

We complete the proof of Theorem 3 by showing that the set of

accumulation points of XA,wλ(t) in
F

for F a facet of Sλ is equal
to XF,w|F , as this proves that

lim
t→∞

XA,wλ(t) =
⋃
F∈Sλ

XF,w|F .

LEMMA 6. Let F be a face of Sλ. Then XF,w|F is the set of

accumulation points of {XA,wλ(t) | t ∈ R>} that lie in
F

, and
each point of XF,w|F is a limit point.

PROOF. We have that XF,w|F is the set of points z ∈ F
such

that ∏
f∈F

z
αf
f ·

∏
f∈F

w
βf
f =

∏
f∈F

z
βf
f ·

∏
f∈F

w
αf
f , (12)

whenever α, β ∈ R
F
≥ satisfy∑

f∈F
αf · f =

∑
f∈F

βf · f where
∑
f∈F

αf =
∑
f∈F

βf =: m . (13)

The Eq. (12) also holds on XA,w , and on XA,wλ(t), it becomes∏
f∈F

z
αf
f ·

∏
f∈F

w
βf
f · t

∑
f βf ·λ(f) =

∏
f∈F

z
βf
f ·

∏
f∈F

w
αf
f · t

∑
f αf ·λ(f). (14)

Observe that

1

m

∑
f∈F

αf · f = 1

m

∑
f∈F

βf · f

is a point in the convex hull of F . Since F is a face of the de-
composition induced by λ, the function λ is affine-linear on F and
so ∑

f∈F
αf · λ(f) =

∑
f∈F

βf · λ(f) .

Let this common value be δ. As dividing (14) by t δ gives (12),
we see that (12) is also a valid relation on every member of the
family {XA,wλ(t) | t ∈ R>}, whenever (αf, βf | f ∈ F) satisfy (13).
It follows that this set of Eqs. (12) holds on every accumulation
point of the family {XA,wλ(t) | t ∈ R>}, which implies that those

accumulation points lying in
F

are a subset of XF,w|F .
To show the other inclusion, for each face F of Sλ, let X◦

F,w|F
consist of those points z ∈ XF,w|F with zf �= 0 for f ∈ F . Evidently
we have

XA,w(Sλ) =
∐
F∈Sλ

X◦
F,w|F ,

and so it suffices to prove that every point of X◦
F,w|F is a limit point

of the family {XA,wλ(t) | t ∈ R>}.
Since F is a face of Sλ, there is a vector v ∈ R

d such that the
function A → R,

a �−→ v · a + λ(a)

is maximized onF with maximum value δ. That is, if v·a+λ(a) ≥ δ
with a ∈ A, then a ∈ F and v · a + λ(a) = δ.

Consider the action of t ∈ R> on x ∈ R
d
> where

(t ∗ x)i := tvi xi .
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Let z ∈ X◦
F,w|F . Then z = ϕF,w(x) for some x ∈ R

d
>, and so

ϕA,w(t ∗ x)a = wa · tv·axa .

Thus, under the action (t.z)a = tλ(a)za of R> on R
A
>, we have

t.ϕA,w(t ∗ x)a = wa · tv·a+λ(a)xa .

Then the line through t.ϕA,w(t ∗ x) is equal to the line through

t−δ
(
t.ϕA,w(t ∗ x)

)
,

whose a-coordinate is

wa · tv·a+λ(a)−δxa .

Since v · a + λ(a) − δ ≤ 0 with equality only when a ∈ F , we see
that the limit of the points t.ϕA,w(t ∗x) of �A as t → ∞ is the point
ϕF,w|F (x) = z, which completes the proof.

B. PROOF OF THEOREM 2

Theorem 3 shows that a limit of translates of XA,w by a one-
parameter subgroup of R

A
> (a toric degeneration of XA,w) is a regular

control surface. This is a special and real-number case of more gen-
eral results of Kapranov et al. [1991, 1992] concerning all possible
toric degenerations of the complexified toric variety XA(C) that we
will use to prove Theorem 2.

Suppose that A ⊂ Z
d is a finite set. We will assume that A is

primitive in that differences of elements of A span Z
d :

Z
d = Z〈a − a′ | a, a′ ∈ A〉 ,

that is, A affinely spans Z
d (if not, then simply replace Z

d by the
affine span of A). Let P

A be the complex projective space with
homogeneous coordinates [za | a ∈ A] indexed by elements of
A. (These are extensions to all of P

A of the homogeneous coordi-
nates (3), which were valid for the nonnegative part of P

A.) The
complex torus H := (C∗)d naturally acts on P

A with weights given
by the setA: t ∈ H sends the point z with homogeneous coordinates
[za | a ∈ A] to the point t.z := [taza | a ∈ A]. Note that XA,1(C) is
the closure of the orbit of H through the point 1 := [1 : . . . : 1]. For
w ∈ (C∗)A, the translate w.XA,1(C) =: XA,w(C) is also the closure
of the orbit of H through the point w (considered as a point in P

A).

Note that
A

is the nonnegative real part [Fulton 1993, Chapter 4]
of P

A, and when w ∈ R
A
> ⊂ (C∗)A, then XA,w is the nonnegative

real part of XA,w(C).
A toric degeneration of XA,1(C) is any translate XA,w(C), or any

limit of translates

lim
t→0

λ(t).XA,w(C),

where λ : C
∗ → (C∗)A is a one-parameter subgroup. This is the

same limit as in Section A, its ideal is the limit of the ideals of
λ(t).XA,w(C) as t → 0. The data of a one-parameter subgroup of
(C∗)A are equivalent to homomorphisms of abelian groups Z

A → Z

and thus to functions λ : A → Z, which explains our notation λ.
The translates XA,w(C) for w ∈ (C∗)A give a family of sub-

varieties of P
A, each with the same dimension and degree, and

each equipped with an action of H . A main result of Kapranov et al.
[1991, 1992] identifies all suitable limits of these translates XA,w(C)
with the points of a complex projective toric variety CA(C). The
points of CA(C) in turn are in one-to-one correspondence with all
possible complex toric degenerations of XA,w(C) as w ranges over
(C∗)A. For a toric degeneration X of a translate of XA,1(C), we write
[X] for the corresponding point of CA(C). We will use this result to
prove Theorem 2 as follows.

PROOF OF THEOREM 2. Fix control points B = {ba | a ∈ A} ⊂
R

n and suppose that {w1, w2, . . . } is a sequence of weights in R
A
>

such that the sequence of toric patches {YA,wi ,B | i = 1, 2, . . . }
converges to a set Y in R

n in the Hausdorff topology.
Consider the corresponding sequence {XA,wi (C) | i = 1, 2, . . . }

of torus translates of XA(C). This gives a sequence [XA,wi (C)] of
points in the projective toric variety CA(C). Since CA(C) is compact,
this sequence of points has a convergent subsequence whose limit
point is a toric degeneration

lim
t→∞

XA,wλ(t)(C) = XA,w(Sλ)(C) =
⋃
F∈Sλ

XF,w|F (C)

of XA,w(C) for some w ∈ (C∗)A and lifting function λ : Z
A → Z.

Replacing the original weights {wi} by this subsequence, we may
assume that, as points of CA(C), we have

lim
i→∞

[XA,wi (C)] = [XA,w(Sλ)(C)]

= lim
t→∞

[XA,wλ(t)(C)] . (15)

The points [XA,wi (C)] of CA(C) are translates of the base point
[XA(C)] by elements of R

A
> ⊂ (C∗)A, and so they lie in the nonneg-

ative real part of the toric variety CA(C), and therefore so does their
limit point. But by (15) this limit point is a translate of XA(Sλ)(C),
and thus it is a translate by a real weight. This shows that we may
take the weight w in (15) to be real.

Theorem 2 will follow from this and the claim that if a sequence
{[Xi] | i ∈ N} ⊂ CA(C) converges to [X] ∈ CA(C) in the analytic
topology, then the sequence of subvarieties {Xi} converges to X
in the Hausdorff metric on subsets of P

A. Given this claim, (15)
implies that in the Hausdorff topology on subsets of P

A,

lim
i→∞

XA,wi (C) = lim
t→∞

XA,wλ(t)(C) = XA,w(Sλ)(C) .

We may restrict this to their real points to conclude that the limit of

patches XA,wi in
A

,

lim
i→∞

XA,wi = lim
t→∞

XA,wλ(t) = XA,w(Sλ) ,

is a regular control surface. Since YA,wi ,B = πB(XA,wi ), the limit
limi→∞ YA,wi ,B equals

lim
i→∞

πB(XA,wi ) = πB
(

lim
i→∞

XA,wi

)
= πB

(
XA,w(Sλ)

) = YA,w,B(Sλ) ,

which is a regular control surface. This will complete the proof of
Theorem 2, once we have proven the claim.

PROOF OF CLAIM. As shown in Kapranov et al. [1991, 1992], the
projective toric variety CA(C) is the Chow quotient of P

A by the
group H = (C∗)d acting via the weights of A. We explain this
construction. Let D = d! · volume(�A), which is the degree of
the projective toric variety XA(C), as well as any of its translates.
Basic algebraic geometry (see Harris [1992, Lecture 21]) gives a
complex projective variety C(D, d,A), called the Chow variety,
whose points are in one-to-one correspondence with d-dimensional
cycles in P

A of degree D. These are formal linear combinations

Z :=
m∑

i=1

DjZj , (16)
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where each coefficient Dj is a nonnegative integer, each Zj is a
reduced and irreducible subvariety of P

A of dimension d , and

D =
m∑

j=1

Dj · degree(Zj ) .

In particular all translates XA,w(C) are represented by points of
C(D, d,A).

The torus (C∗)A acts on P
A and thus on C(D, d,A), with the

points representing the translates XA,w forming a single orbit. The
Chow quotient CA(C) is the closure of this orbit in C(D, d,A).
An explicit description of CA(C) may be found in Kapranov et al.
[1991, 1992]. We do not need this description to prove Theorem 2,
although such a description could be used to help identify the limit
control surface whose existence is only asserted by Theorem 2.

The points of CA(C) correspond to toric degenerations of trans-
lates XA,w(C). We describe this, associating a cycle of degree D
and dimension d to any toric degeneration. Let Sλ be a regular de-
composition of A induced by a lifting function λ : Z

A → Z. Let
F ⊂ A be a facet of Sλ. Set δF to be the index in Z

d of the lattice

Z〈f − f ′ | f, f ′ ∈ F〉
spanned by differences of elements of F . Then XF,w|F (C) is a
subvariety of P

F of dimension d and degree

d! · volume(�F )/δF .

The toric degeneration

lim
t→∞

XA,wλ(t)(C) =
⋃

F a facet of Sλ

XF,w|F (C)

(this is a set-theoretic limit) corresponds to the cycle∑
F a facet of Sλ

δFXF,w|F (C) ,

which has degree D = d! · volume(�A).
We now prove the claim. Following Lawson [1989, Section 2],

Kapranov et al. [1991, Section 1] associate to a cycle (16) a current
on P

A—the linear functional
∫

Z
of integrating a smooth 2d-form

over the cycle Z. The analytic topology on the Chow variety is
equivalent to the weak topology on currents. (The weak topology is
the topology of pointwise convergence: A sequence {ψi | i ∈ N} of
currents converges to a current ψ if and only if for every 2d-form
ω on P

A we have limi→∞ ψi(ω) = ψ(ω), as complex numbers.)
Suppose that {[Xi]} ⊂ CA(C) converges to [X] in the usual

analytic topology on CA(C),

lim
i→∞

[Xi] = [X] .

Then the associated currents converge. That is, for every smooth
2d-form ω, we have

lim
i→∞

∫
Xi

ω =
∫

X

ω . (17)

We use this to show that limi→∞ Xi = X, in the Hausdorff metric.
Given a point x ∈ X and a number ε > 0, let ω be a 2d-form

with
∫

X
ω �= 0 which vanishes outside the ball B(x, ε) of radius ε

around x. Then (17) implies that there is a number M such that if
i > M , then

∫
Xi

ω �= 0, and thus Xi ∩ B(x, ε) �= ∅. Since X is

compact, there is some number M such that if i > M , then every
point of X is within a distance ε of a point of Xi .

To complete the proof of the claim, we show that for every number
ε > 0, there is a number M such that if i > M , then every point
of Xi lies within a distance ε of X. If not, then there is an ε > 0
such that for every M , there is some i > M such that Xi has a
point xi with dist(xi, X) > ε. Replacing {Xi} by a subsequence,
we may assume that each Xi has such a point xi . It is no loss to
assume that the points xi are smooth. By the compactness of P

A

and of the Grassmannian of d-dimensional linear subspaces of P
A,

we may replace {Xi} by a subsequence and assume that the points
xi converge to a point x, and that the tangent spaces Txi

Xi also
converge to a linear space L. Let ω be a smooth 2d-form which
vanishes outside of B(x, ε/2) with

∫
L

ω �= 0. Then,

lim
i→∞

∫
Xi

ω �= 0 .

But then (17) implies that
∫

X
ω �= 0, and so X ∩ B(x, ε/2) �= ∅,

which contradicts our assumption that X is the limit of the Xi .
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CRACIUN, G., GARCÍA-PUENTE, L., AND SOTTILE, F. 2010. Some geometrical
aspects of control points for toric patches. In Mathematical Methods
for Curves and Surfaces, Lecture Notes in Computer Science, vol. 5862.
Springer, Berlin, 111–135.

FARIN, G. 1997. Curves and Surfaces for Computer-Aided Geometric De-
sign. Computer Science and Scientific Computing. Academic Press Inc.,
San Diego, CA.

FULTON, W. 1993. Introduction to Toric Varieties. Annals of Mathematics
Studies, vol. 131. Princeton University Press, Princeton, NJ.

GEL′FAND, I. M., KAPRANOV, M. M., AND ZELEVINSKY, A. V. 1994. Dis-
criminants, Resultants, and Multidimensional Determinants. Birkhäuser
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